The European Social Model in the age of AI

Authors

DOI:

https://doi.org/10.60054/PEU.2025.12.290-300

Keywords:

European Social Model, Artificial Intelligenc, EU Labour Market, Social welfare, Digital Skills

Abstract

The European social model (ESM) has been a pillar of the European Union, balancing economic growth with social justice. Yet, the emergence of digitalization and artificial intelligence (AI) is fundamentally transforming labour markets, welfare policies and social protection. This paper explores the impact of AI on the ESM, with particular attention to job creation and displacement, digital skill gaps, and changing welfare architecture. The methodology is based on a qualitative policy analysis and labour market data from the Eurostat and European Commission sources. The study analyses the ways in which AI-led changes will influence job losses, skills mismatches and the sustainability of the systems of social security. The results emphasize the importance of proactive regulation, investments in digital literacy, and regulatory measures to enable AI to drive inclusive economic growth rather than increasing inequality. The recommendations include lifelong learning, adapting welfare systems to new forms of work and responsible governance of AI.

References

Andrews, C., de Montesquiou, A., Arevalo Sanchez, I., & Heisey, J. (2021). The state of economic inclusion report 2021. World Bank. doi:10.1596/978-1-4648-1598-0.

Arslan, Y., Drehmann, M., Hofmann, B., & Kharroubi, E. (2018). Globalisation and deglobalisation in emerging market economies: Facts and trends. SSRN Electronic Journal [Preprint]. Retrieved December 2024, from https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3331749

Bernhardt, A., Kresge, L., & Suleiman, R. (2022). The data-driven workplace and the case for worker technology rights. ILR Review, 76(1), 3. doi:10.1177/00197939221131558.

Bode, E., & Gold, R. S. (2018). Adult training in the digital age. Economics, 12(1). doi:10.5018/economics-ejournal.ja.2018-36.

Cabral, T. S. (2020). Liability and artificial intelligence in the EU: Assessing the adequacy of the current product liability directive. Maastricht Journal of European and Comparative Law, 27(5), 615. doi:10.1177/1023263x20948689.

Cheong, B. C. (2024). Transparency and accountability in AI systems: Safeguarding wellbeing in the age of algorithmic decision-making. Frontiers in Human Dynamics, 6. doi:10.3389/fhumd.2024.1421273.

Choung, H., David, P., & Ross, A. (2022). Trust in AI and its role in the acceptance of AI technologies. International Journal of Human-Computer Interaction, 39(9), 1727. doi:10.1080/10447318.2022.2050543.

Chu, C. H., Wong, E. K. Y., Chan, E. A., Chan, C. H. Y., & Lam, W. (2023). Age-related bias and artificial intelligence: A scoping review. Humanities and Social Sciences Communications, 10(1). Retrieved 8 May 2025, from https://doi.org/10.1057/s41599-023-01999-y

Curto, G., & Comim, F. (2023). Fairness: From the ethical principle to the practice of machine learning development as an ongoing agreement with stakeholders. arXiv [Preprint]. doi:10.48550/arxiv.2304.06031.

Dhopte, A., & Bagde, H. (2023). Smart smile: Revolutionizing dentistry with artificial intelligence. Cureus. doi:10.7759/cureus.41227.

Elendu, C., Obi, O. C., Adeyemo, A. A., & Oladele, J. (2023). Ethical implications of AI and robotics in healthcare: A review. Medicine. doi:10.1097/md.0000000000036671.

European Commission. (2024). The future of European competitiveness: A competitiveness strategy for Europe. Publications Office of the European Union. Retrieved 5 May 2025, from https://commission.europa.eu/document/download/97e481fd-2dc3-412d-be4c-f152a8232961_en

Eurostat. (2025a). Artificial intelligence by size class of enterprise. Retrieved 8 May 2025, from https://ec.europa.eu/eurostat/databrowser/view/isoc_eb_ai/default/table?lang=en

Eurostat. (2025b). Government expenditure on social protection. Retrieved 7 May 2025, from https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Government_expenditure_on_social_protection

Frank, M. R., Autor, D. H., Bessen, J. E., Brynjolfsson, E., Cebrian, M., Deming, D. J., Feldman, M., Groh, M., Lobo, J., & Youn, H. (2019). Toward understanding the impact of artificial intelligence on labour. Proceedings of the National Academy of Sciences, 116(14), 6531–6539. doi:10.1073/pnas.1900949116.

Hassan, B. (2022). Artificial intelligence in social security: Opportunities and challenges. The Journal of Social Policy Studies, 20(3), 407. doi:10.17323/727-0634-2022-20-3-407-418.

Holzer, H. J. (2019). The US labour market in 2050: Supply, demand and policies to improve outcomes. RePEc: Research Papers in Economics [Preprint]. Retrieved January 2025, from https://econpapers.repec.org/RePEc:iza:izapps:pp148

Klinova, K., & Korinek, A. (2021). AI and shared prosperity. doi:10.1145/3461702.3462619.

Moraliyska, M. (2021). Social and regulatory challenges to digital labour platforms. Eastern Academic Journal, 21(3), 12–25. Retrieved (n.d.), from https://www.e-acadjournal.org/pdf/article-21-3-2.pdf (Нямаше дата на достъп, затова остава (n.d.))

Morandini, S., Deidda, L., Guerrini, A., & Taisch, M. (2023). The impact of artificial intelligence on workers’ skills: Upskilling and reskilling in organisations. Informing Science: The International Journal of an Emerging Transdiscipline, 26, 39–68. doi:10.28945/5078.

Mukherjee, A., & Chang, H. H. (2025). Agentic AI: Autonomy, accountability, and the algorithmic society. doi:10.2139/ssrn.5123621.

OECD. (2024). Using AI in the workplace. OECD Artificial Intelligence Papers. doi:10.1787/73d417f9-en.

Patil, D. (2024). Impact of artificial intelligence on employment and workforce development: Risks, opportunities, and socioeconomic implications. SSRN. Retrieved 8 May 2025, from https://ssrn.com/abstract=5057396

Radanliev, P. (2024). AI ethics: Integrating transparency, fairness, and privacy in AI development. Applied Artificial Intelligence, 39(1). doi:10.1080/08839514.2025.2463722.

Rane, N. L., Paramesha, M., Rane, J., & Mallick, S. K. (2024). Policies and regulations of artificial intelligence in healthcare, finance, agriculture, manufacturing, retail, energy, and transportation industry. In Artificial intelligence and industry in society 5.0 (pp. 67–81). Deep Science Publishing. Retrieved 8 May 2025, from https://deepscienceresearch.com/index.php/dsr/catalog/book/2/chapter/46

Sood, A., & Khanna, P. (2024). A macroeconomic analysis of the impact of artificial intelligence on economic inequality, workforce composition, and economic growth. Open Journal of Business and Management, 12(5), 3446. doi:10.4236/ojbm.2024.125172.

Stefano, V. D., & Taes, S. (2022). Algorithmic management and collective bargaining. Transfer: European Review of Labour and Research, 29(1), 21. doi:10.1177/10242589221141055.

Sun, N., Liang, Y., Feng, W., Chen, L., & Gao, Z. (2024). From principles to practice: A deep dive into AI ethics and regulations. arXiv preprint, arXiv:2412.04683. Retrieved 8 May 2025, from https://arxiv.org/abs/2412.04683

Sun, Z. (2025). The impact of AI on labour market and the corresponding countermeasures. Advances in Economics Management and Political Sciences, 138(1), 95. Retrieved 8 May 2025, from [подозрителна връзка е премахната]

Vargas, N. C. (2024). Exploiting the margin: How capitalism fuels AI at the expense of minoritized groups. AI and Ethics. doi:10.1007/s43681-024-00502-w.

von Essen, L., & Ossewaarde, M. (2023). Artificial intelligence and European identity: The European commission’s struggle for reconciliation. European Politics and Society, 25(2), 375. doi:10.1080/23745118.2023.2244385.

Zajko, M. (2022). Artificial intelligence, algorithms, and social inequality: Sociological contributions to contemporary debates. Sociology Compass, 16(3). doi:10.1111/soc4.12962.

Downloads

Published

2025-11-07

Issue

Section

Fourth panel: AI IN EUROPE: A FORCE FOR CHANGE OR A CHALLENGE TO OVERCOME?